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Mean-field approximations to the longest common subsequence problem
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The longest common subsequent€S) problem is a fundamental problem of sequence comparison. A
natural approximation to this problem is a model in which every pair of letters of two “sequences” are
matchedindependentlyof the other pairs with probability $ S representing the size of the alphabet. This
model is analogous to a mean-field version of the LCS problem, which can be solved with a cavity approach
[J. Boutet de Monvel, Eur. Phys. J.B293(1999]. We refine here this approximation by incorporating in a
systematic way correlations among the matches in the cavity calculation. We obtain a series of closer and
closer approximations to the LCS problem, which we quantify in the I&¢mit, both with a perturbative
approach and by Monte Carlo simulations. We find that, as it happens in the expansion around mean field for
other disordered systems, the corrections to our approximations depend upon long-ranged correlation effects
that render the largg expansion nonperturbative.

PACS numbdps): 02.50.Ga, 64.60.Ak, 64.60.Cn, 75.10.Nr

[. INTRODUCTION the above “random string” model can be encoded in vari-
ablese;; defined as occupation numbers for the matches of
The longest common subsequen@eCS) problem is a  andY, namelye;; = Ox, ,szl if X;=Y; and O otherwise. The
simple and fundamental example of a sequence comparisqftesence of long-ranged correlations among the maiébes
problem. Such problems arise under various important situexample, given any indices;,j;,i»,j,, the variables
ations, ranging from biology to combinatorics and cc_)mputa—eiljllEiljz,Eizl_l,,Ei2j2 are obviously correlatédcomplicates
Flonal suencgﬁl]. A freqqent probler_n of m0|eCU|ar blology the problem very much, and to date the computation of the
is the detection of evolutionary relationships between d'ﬁer'average length of a LCS has turned out to be intractable. In
ent moleculeg?2]: Given two DNA molecules that evolved |

from & common ancestor throuah a process of random inse 10], we studied a related “Bernoulli matching” model
'  ances tgh a process ot ran NS&{ihere thee;;'s are taken to be independent and identically
tions and deletions, how can one recover the ancestor?

ossible approach is to solve a particular instance of the LC istributed random  variables witP(ej; =1)=1—P(e;
P PP b =0)=1/S. It turns out that this model is very analogous to a

problem, namely, to look for sequences of nucleotides th"’\Inean-field version of the LCS problem, which can be solved

appeann the same ordem the two DNA ”?O'eC“'eS* a_nd to using a cavity approach. This solution was found to provide
pick such a common subsequence that is as long, i.e., cor-

tains as manv nucleotides. as possible. Replacing th | very good approximatiofwhose precision ameliorates as
y ’ P ' P 9 e size of the alphabet increasés the average LCS length
two DNA molecules by two general sequence$

— (X Xy) and Y= (Y v,,) (not necessarily of of two random strings measured from direct Monte Carlo
— 13+« /AN — 1y =3I M

) . simulations. We pursue here the work{ @0] by studying the
equal Iepgth)staken from a given alphabgt,. one obtains 8hehavior of the F;bove “mean—field"i{apg)roiimati)(/)ngin the
genteralhmr?)t(ancO(IaYof the LCIS problem. As it |shnatura}I to e);1imit of large alphabets. We describe a method that allows us
pec tvl\i € tan dare \_/edry on% setthu?nces w Ofehebeerge? Yo refine the cavity calculation made for the Bernoulli match-
are taken at random independently from an alpha 0 ing model, by taking correlations of the random string model
Iett_ers .(W'th S=2), there is a defln_lte de_nS|ty of matched into account in a systematic way. This leads to a series of
Ioomtﬁ mha LCS;K aPIdY‘ MO;G pl_rg(gsefly, iy de?(otes tr&e approximations getting closer and closer to the LCS prob-
ength(the number of lettejsof a of X1, ... Xy) @and o \yhich we quantify within a perturbative approach valid
(Y1, ....,Yy), One can provésee, e.g.[3]) that with prob-

bil / d q in the limit S—«. We find that, while our perturbative ap-
ability one, Ly N. tend to a nonrandom constant as N proach provides an excellent approximation to the LCS prob-
—o0. The determination of5 and of the rate at whichy /N

lem at finiteS it leads to a singular expansigim powers of

approaches this limit are much studied combinatorial prob-ll\/é) around the Bernoulli matchin .
i ) e . g model. In particular,
lems[4—6|. A connection with statistical physics has beentheleading corrections to this mean-field approximation de-

provided by Hwa and Lssig[7] who found that Needleman- end upon long-ranged correlation effects among the

Wunsch sequence alignment, a popular comparison sche
for DNA and proteins of which the LCS problem is a special atches and cannot be captured by the method we use.

cas€ 8], falls in the universality class of directed polymers in

a random medium. This connection is based on a geometric
interpretation(explained in the next sectiprof the LCS
problem as a longest path probld®)]. The randomness in

II. THE CAVITY SOLUTION TO THE BERNOULLI
MATCHING MODEL

Consider the latticeCyy, formed by the integer points
(ij), 0<i=N,0=<j=<M together with nearest-neighbor
*Electronic address: j.boutet.de.monvel@ihk.ki.se bonds, and add a diagonal bofd—1,j —1),(ij)} for each
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point (ij) such thate;;=1 (we call such a point anatch. -85 - . » - - ' ‘ ' '
Define the weight of any path ofy to be the number of
diagonal bonds that it contains, and lgf be the maximum -6
possible weight of a directed path joining the point (0,0) to
(ij). In the random string modelL,;; is just the length of a -65
LCS of the substringsXs, ... .X;) and (Y4, ...,Y;). Set-
ting Ljo=Lo;=0, thel;;’s satisfy the following recursion 7t
relation: Fs
-75
Lij=maxLi_qj,Lij-1,Li—1j-1t€j), 1)

which follows from the fact that any directed path ending at

(ij) must visit one of the pointsi¢1,j),(i,j—1), or (i
—1,j—1). It turns out to be more convenient to work with -85
the local gradientvariablesvj;=L;;—L;_1; and uj;=L;;

—L; -1, rather than with_;; itself. It is obvious from Eq(1) Y T T S v e VI T ST —
that »;; and w;; can take only the values 0 or 1. Writing e

=1-—x if xe{0,1}, the recursion relations for;; and u;;
can be written in algebraic form:

FIG. 1. Scaling ofes= yg— vs with S Log-log plot for 26<S

<130 (error bars not reproducgdogether with a reference line of
—— — slope — 3/2.

vii=(1-€jvij-)mi-1j,
Note that Eqs(4) and (5) are only valid for 15<r<S. If
r>S (r<1/S), the process evolves toward the stapep(’)
=(1,0) [(p,p’')=(0,1)] (this is a “percolation transition”
of the LCS problen{10]).

pij= (1= € i—1)) Vi -1, @)

with v o= vo;=ujo=uoj=0. The key property that was
used (but left unjustified in [10] is that in the Bernoulli
matching model the variableg; and u;; alongi+j=t be-
comeindependenin the limitt— . This can be viewed as a ll. BERNOULLI MATCHING MODEL VERSUS RANDOM
consequence of the directed polymer picture[of if we STRING MODEL

interpretL;; as the height profild.(x,t) (as a function of
=i—j andt=i+]) of a growing one-dimensional interface,
described in a continuum limit by the Kardar-Parisi-Zhang
equation(KPZ) [11]. In this limit, it is known[12] that the
gradient ofL (x,t) become decorrelated alor@st—oc. The

Let us briefly compare Ed5) to the numerical estimates
obtained for the random string model. For simplicity we
shall restrict ourselves to the case 1 (random strings of
equal sizep Using Monte Carlo simulations and a finite-size
’ . . . . scaling analysis, it was founfllO] that the relative error
vi;'s and w;;’s could still have finite-ranged correlations g . B_ Brr_ 1y .
along thex direction at thediscretelevel of the model. How- (35’0/ 7;5)/%/3 Z[WIﬂ:ij—SS 75((; dl) 2/(l+f\/21]s<|5156220'ut
ever this does not happen here. This can be seen from g 0t+0(; 90_/ fans_ IS ' IT eclreasesdo E] blhls .
Markov chain approach that we present in the Appendix. Th&POUL™ 1.7 TorS= B)' 'gure 2 reproduces the behavior

; : ; s%f the differencees= y<— ys in a log-log plot forS up to

consequence of this decorrelation property is that we can u ; STTs S
Egs. (2) in a self-consistent way in order to compute the 130- Numerically,es= ys— ys decreases rather fast at large
probabilities p;=P(»;=1) and pi'j =P(u;=1) for i,] S,.showmg als dependencg for a value ozf compatible
large. In this sense we may view the Bernoulli matchingW'th 3/2.. We remark that a simple expanS|an holds for the
model as a mean-field model in which Eqg) are “cavity ~Bernoulli matching model, as we havBys/(2S-2)
equations”[10]. Assuming independence of ;j,u;;, = /(1-1/9)=1+1/S+1/S°+ ... Anticipating on a simi-
ande; in Eq. (2) we get lar expansion for the random string model, we would expect

. corrections in the left-hand side of this relation to occur in

Pij=1-pi_q;— (1=1S)(1—p;, j-1)(1=pi_y)), the 15 term.

Pi=1-pi -1~ (1-US)(1—p;,j-)(1—-p{_1;). 3

These equations can be solved in a continuum lirh@],
leading to

Jrs—1 JSir—1

p(r)= 51, p’(r)Zﬁ, (4)

wherep(r)=lim,__p;, andp’(r)=lim __p{,, and

Liri JrS—r—1

: =p(r)+rp’(r)=T 5)

¥8(r)=lim

| —

IV. INCORPORATION OF CORRELATIONS

We now come to the question of computing corrections to
the above approximation, by incorporating some of the cor-
relations of the random string model in our calculation. This
can be done in a systematic way as follows. We iterate rela-
tions (2) a certain number, sal¢ of times. The resulting
equations are averaged, taking into account correlations
among thee;;’s, to build up the transition probabilities of a
Markov process that we use as a refined approximation to the
LCS problem. This approach is similar to theéree approxi-
mations that were used by Cook and Derrida to obtainda 1/
expansion for the directed polymer problem on finite-
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FIG. 2. Perturbative approximations tgs.
This is a bar graph: For each<35<10, the first
to fifth bars from left to right give, respectively,
the values ofy 8=y, y&, v 1) and our
numerical estimate ofs.
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dimensional lattice§13]. We note however that the Ber- large this approach becomes more and more accurate, as the
noulli matching model is very different from a model of exact invariant distribution resembles more and more that of
directed polymers on a hierarchical lattice, and the wordhe Bernoulli matching model, and we expect that the lead-
“tree” would be somewhat misleading here. In order to ana-ing corrections introducedt a given level kare captured by

lyze the above new process, we use a perturbative approadhjs approximation.

assuminghat the variables;; andu;; for i +j=t are inde- We now evaluate the behavior aff) as S—=. This
pendent in the stationary distribution, as they are in the Berevaluation involves comparir@k)(p) to the analogous poly-
noulli matChing model. It is then Straightforward to obtain anomial fg(k)(p) Computed within the Bernoulli matching
self-consistent equation fop=lim,__p; in the form  4el. The coefficients Olﬁf(sk):fg(k)_f(sk) are directly re-

f9(p)=p, wheref%¥(p) is an Sdependent polynomial of lated to correlations among thg’s. For example, the com-
degree X in p. The positive solutiorp to this equation putation of §f§) involves the four-correlation term
provides us with a new approximatiovgkl)=2p.(sk) 0 ys. (e €,€0,0,€,,=(1+1U(S—1)%)(1-1/9* and we
Since there are no three-term correlations in the randomaye

string model(correlations among the;;’s occur only for

configurations forming loops on the square lattice, e.g., in the 1 1\4

four corners of a rectangleit follows that no correlation in 5f(s3)(p): —3( 1— _) (1-p)31- f(sl)(p)]z, (6)

the disorder occur at levé&l=2, so y(sk) differ from yg only (5-1) S

for k=3. An explicit computation shows that the equation

99(p)=p has only one positive root, at least upke-5.  With f§)(p)=fE¥(p)=1-p— (1~ 1/S)(1~p)2. The coef-

The corresponding values £ thus provide sensible per- ficients of 5f% all turn out to be of orderO(1/S%) or
turbative approximations tpg, which are reproduced in Fig. smaller. For completeness we also give the expression of the
2. Note that the estimates are improving, at least ufx to polynomial f2)(p), which reads

=5 for S=3. The successive values ¢f are not incom-

patible with a nonmonotonous approachyga The relative 1
error (Y —yg)/ys at k=5 is of —0.48% for S=2 and fg(3)(P)=1—f(52)(P)—(1—§
+0.28% for S=3, a significant improvement compared to

the error committed with the Bernoulli matching estimate 2 o
y2. This approximation scheme would be perfectly consis- _2< 1- §) P(1-p)[1-fs'(p)]
tent if a decorrelation property occurred at every levels

This is in factnotthe case, for example, one can show that in - 8 ) 2
the invariant distribution of the process at lewet 3, the 1 S [1=15"(p)]
variablesy;; and u;; are necessarily correlated. In the KPZ

picture we may say that fok=3, there remains as—x

short-ranged correlations along tiedirection in the local

gradients of the growing interface’s height. However, thesgvhere f&)(p)=f2?(p) = fef{)(p). If we now let 5p§)
correlations turn out to be numerically very small, which =p§(k)—p(sk) where pg(k) is the positive solution to
explains why our perturbative approach gives already &2(p)=p, i.e.,p2®=pS=1/(1+/S), a standard compu-
pretty accurate result &= 2,3. Moreover, whers becomes tation leads to

1
- _ n)2
S(1 p)

1
p2+(1—§)<1—p>2},

)
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V. CONCLUSION
5t¥(p?)

(k) — 2 >
oPs B(K), B ®) The main point of this paper is that, while the Bernoulli
1- d_pfs (Ps) matching model provides a natural and accurate mean-field-
like approximation to the LCS problem valid in the limit of a

up to negligible terms at larg& It can be checked that 'ar9e alphabet, the corresponding lagexpansion is non-
(d/dp)fg(k)(pg) —1-2k/\/S+0O(1/S). It follows then from per_turba_t|ve:_lnclu_5|on of fl_m_te-range(_j correlations leads t_o a
Eq. (8) that for fixed k the correctionﬁp(sk) is of order S€ries with d|\{erg|ng coefficients, while the overall behavior
0O(1/5°?), which cannot account for the observe®37 be- of the expansion at largs does not reproduce the observed
havior of es= yg_ ys. The computation gives&pg) gap between the two models. T_hls (_:ontrasts with the_ results
~1/65%2 5p(34)~1/285/2, and 5p(55)~1/85’2, together with of [13], where then-tree approximation led to a consistent

correcting terms in the form of series in powers of 3/ We 1/0! expansion for the dire_cted polymgr prob!em. As a_lready
could not extract the general terms of these series for arbpomted_ out, we are d_ealmg here W'th.a dn‘fe_rent kind (.)f
trary k, but we strongly suspect théit least the coefficient mean-ﬂ_elc_j approximation. The Bermnoulli mqtchmg model 1S
A, in front of 1/552 divergesat largek. The argument goes not an |nf|n|.te—d|.men5|onal model, and replica symmgtry is
roughly as follows. The correlation terms involved in the N0t broken in this modefl10]. Note that the I expansion
computation Oféf(sk)(p) can all be put into the form for the @rected polymer problem |s.also known to' be singu-
lar, but in a more subtle way: Replica symmetry is restored
— — at finite dimensions, leading to important “tunneling” ef-
(€iyjy i) =(Q—ej) - (1-€)). ) fects between the energy valleys of the mean-field picture
[14]. An interesting feature of the LCS problem is that the
Expanding the product and taking averages, it is not difficulicorrections induced by finite-ranged correlations, while sin-

to see that any such term behaves as gular, remain within a perturbative series in powers af/
In this respect, the situation for the LCS problem seems more
<(1_6i11'1)' . ~(1—ei|j|)> favorable than in other combinatorial problems where the

correlations in the disorder induce nonperturbative correc-

V1 (1)1 V1 Mgy, 1 tions in an expansion around the mean-field approximation

= —(1) s (2) §z—(3) F T+O( ) _[15]. This_make_s the LCS_probIe_m an interesting model for
investigating this kind of singularity.

s

, (10
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gives @d?/dk?)n,~k?/2, leading ton,~ % k* (from a more
precise computation, taking account w§=0 andn;=1,
one finds thatn,=&k*+3k3+ Zk?+1). All these rect-
angles are involved i\, as, for example, the polynomial
5t¥(p) always contains a term of the form

i

APPENDIX: MARKOV CHAIN APPROACH
TO THE BERNOULLI MATCHING MODEL

Let us denote by #u)'={v;; ,u;; .i+j=t} the state of
the process defined by E(R), with t interpreted as time. In
(1-p)%, (1)  the Bernoulli matching model the evolution is Markovian,

(i) ey i.e., the transition from a given state at timi® another state
at timet+1 is not affected by the states at timeés<t (this
which gives a contributiom, /S*+0(1/S"?) to 5f(sk)(p5). is not the case in the random string model, where the transi-
Unless some special cancelation occurs between the differetibn from timet to timet+1 is affected by the whole history
correlation terms, we thus expect that the behaviok,oWvill of the process We will first show that, as a Markov process,

be approximately given by,x<n,/2k, i.e., we find that it the Bernoulli matching model admits invariant distributions
diverges likek® at largek. We conclude that the leading in which the components ofuu)' are completely decorre-
corrections to the Bernoulli matching model in a lar§e lated (we mention that the same result has been found in a
expansion depend on long-ranged correlations among thdifferent way in[16], in the caseN=M). Consider the rela-
matches in the random string model. In order to capture thertions (2) restricted to a given cell of the latticg, . The

we should look at arbitrarily large values kffor which the  corresponding “one-cell” transition probability
above perturbative approach is no longer valid. Pi(v,u|v’,u') is given by
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Pi(v,ulv' ) It can also be checked that the Markov process defined by
Eqg. (A3) connects any two state;{u;),(v{ »{) having the
same charg€. It follows that there are exactlyl2+1 pure
distributions, in correspondence with the possible values
o —L=<C=<L. We can extract a formal expression for the pure
X[v'pn'+(21=-1Sv u']. (A1) invariant distributionmc(v;,u;) evolved from an arbitrary

) ) state of chargeC, from the “mixed” invariant distribution
A simple computation shows that the one-cell Perron-_(, )
""" (v;, ;i) . Namely, we have

Frobenius equatio®, 7= 7, (with matrix notition$ has a
solution of the forma(v,u)=[pr+(1—p)v][p'n+(1 (0p")
—p’)u] provided the probabilitiep andp’ satisfy e (i) C_Ei Vi+2i Hi

me(vi,pi)= Z(C) (A5)

B V,LL;’;’

S +7/_L?,LL,+V;V,;,+W

l=p+p'+(S—1)pp’. (A2)

Suppose now that we let the bonds on the lower corner othereZ(C) is a normali;ation factor. Note that, contrary to
any given rectangle be occupied independently with prob!h® appearances, the right-hand side of &p) doesnot
ability p for horizontal bonds ang’ for vertical bonds. A depend ong,p’) [this can be seen directly from the expres-
moment's thought shows that tsamedistribution will hold  sion of #(PP") by making use of Eq(A2)]. In the limit L
for the upper corner bonds if we let the occupation numbers—2, the fluctuations ofC about its mean valu&(p’ —p)

for the bonds inside the rectangle evolve according to Eqyith respect toﬂ(LPvP') become negligible, and we expect that
(2), as long ap andp’ satisfy Eq.(A2). Hence any solution  the differences between the pure distributians(more pre-

of Eq. (A2) provides us with a decorrelated invariant distri- cisely the differences between their finite correlation func-
bution as was claimed. In a continuum limit, these invariankjong) for which C/L is close top’ —p will become insig-
distributions can be identified locally with the “pure” in- pnificant. This can be checked directly from EAS5) using a
variant distributions of the process, i.e., those invariant dissaddle-point evaluation. Hence the pure distributions on a
tributions evolved from a single initial state of the variablesperiodiC band of infinite width can be identified with a con-

v,pu. More precisely let us impose periodic boundary condi-y, 1 of decorrelated distributions®?"), parametrized by

tions along thex=i—j direction (this is a way of working : . ’ :
the solutions of Eq(A2) for which O=p,p’<1. Returnin
“locally” ). We let v'=(,...,») and u' q(A2) b.p g

; ¢ : , to the original latticeCy ), one must take care of the bound-
=(p1, ... u) be the state variables at tim@n a band of 51y conditions imposed along the axes0 andj=0. The
“width” L, and we adopt a numerotation such that BYJ.  process will now develop only locall§i.e., along any given
reads direction according to a distribution of the formr(P?"),
with pandp’ being functions of =i/j. The cavity approach
of Sec. Il allows us to treat different boundary conditions in
4 — 1 a simple way. For example, if the horizontal bonds algn

wit= A i, A3 g (tEe vert}ilcal bonds aFI)on'g= 0) are supposed to be@og
fori=1,... L (L+1 being identified with 1). From the CuPied independently with probabilitp; (pz), where 0
remarks made above, the Perron-Frobenius equijon, ~ ~P1, P2<1/(1+ ) (the original problem corresponds to
—m_ of this process admits solutions of the form the casep;=p,=0), one finds that

R T o
vi T =(1-€ i)y,

PP vy, v ) =T ma(v ), where again p(r)=p;, O=r=ry,
(p,p’) is any solution of Eq(A2). For finite L, however,
w(Lp'p') is not pure. To get an understanding of the pure dis- _ \/E—l e
tributions, we adopt a lattice gas point of view, remarking p(r)= s—1 ' Msr=sr2
that the quantity

1-p2

L —
p(r)_—v r2r21 (A6)
+ —
C:Zl ViT K (Ad) 1+(5=Dp.
where r; and r, are such thatp;=(yr,;S—1)/(S—-1),
is a conserved charge of the evolutighis conservation law p,=(y/S/r,—1)/(S—1), andp’(r) is such that Eq(A2) is
is exact only under the above periodic boundary condijions satisfied.
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