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Mean-field approximations to the longest common subsequence problem

J. Boutet de Monvel*
Institute for Hearing and Communication Research, M1:00-ENT, Karolinska Hospital, 17 176 Stockholm, Sweden

~Received 8 March 2000!

The longest common subsequence~LCS! problem is a fundamental problem of sequence comparison. A
natural approximation to this problem is a model in which every pair of letters of two ‘‘sequences’’ are
matchedindependentlyof the other pairs with probability 1/S, S representing the size of the alphabet. This
model is analogous to a mean-field version of the LCS problem, which can be solved with a cavity approach
@J. Boutet de Monvel, Eur. Phys. J. B7, 293 ~1999!#. We refine here this approximation by incorporating in a
systematic way correlations among the matches in the cavity calculation. We obtain a series of closer and
closer approximations to the LCS problem, which we quantify in the largeS limit, both with a perturbative
approach and by Monte Carlo simulations. We find that, as it happens in the expansion around mean field for
other disordered systems, the corrections to our approximations depend upon long-ranged correlation effects
that render the largeS expansion nonperturbative.

PACS number~s!: 02.50.Ga, 64.60.Ak, 64.60.Cn, 75.10.Nr
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I. INTRODUCTION

The longest common subsequence~LCS! problem is a
simple and fundamental example of a sequence compar
problem. Such problems arise under various important s
ations, ranging from biology to combinatorics and compu
tional sciences@1#. A frequent problem of molecular biolog
is the detection of evolutionary relationships between diff
ent molecules@2#: Given two DNA molecules that evolve
from a common ancestor through a process of random in
tions and deletions, how can one recover the ancestor
possible approach is to solve a particular instance of the L
problem, namely, to look for sequences of nucleotides
appearin the same orderin the two DNA molecules, and to
pick such a common subsequence that is as long, i.e.,
tains as many nucleotides, as possible. Replacing
two DNA molecules by two general sequencesX
5(X1 , . . . ,XN) and Y5(Y1 , . . . ,YM) ~not necessarily of
equal lengths! taken from a given alphabet, one obtains
general instance of the LCS problem. As it is natural to
pect, whenX andY are very long sequences whose eleme
are taken at random independently from an alphabet oS
letters ~with S>2), there is a definite density of matche
points in a LCS ofX andY. More precisely, ifLN denotes the
length~the number of letters! of a LCS of (X1 , . . . ,XN) and
(Y1 , . . . ,YN), one can prove~see, e.g.,@3#! that with prob-
ability one, LN /N tend to a nonrandom constantgS as N
→`. The determination ofgS and of the rate at whichLN /N
approaches this limit are much studied combinatorial pr
lems @4–6#. A connection with statistical physics has be
provided by Hwa and La˝ssig@7# who found that Needleman
Wunsch sequence alignment, a popular comparison sch
for DNA and proteins of which the LCS problem is a spec
case@8#, falls in the universality class of directed polymers
a random medium. This connection is based on a geom
interpretation~explained in the next section! of the LCS
problem as a longest path problem@9#. The randomness in
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the above ‘‘random string’’ model can be encoded in va
ablese i j defined as occupation numbers for the matches oX
andY, namelye i j 5dXi ,Yj

51 if Xi5Yj and 0 otherwise. The
presence of long-ranged correlations among the matches~for
example, given any indicesi 1 , j 1 ,i 2 , j 2, the variables
e i 1 j 1

,e i 1 j 2
,e i 2 j 1

,e i 2 j 2
are obviously correlated! complicates

the problem very much, and to date the computation of
average length of a LCS has turned out to be intractable
@10#, we studied a related ‘‘Bernoulli matching’’ mode
where thee i j ’s are taken to be independent and identica
distributed random variables withP(e i j 51)512P(e i j
50)51/S. It turns out that this model is very analogous to
mean-field version of the LCS problem, which can be solv
using a cavity approach. This solution was found to prov
a very good approximation~whose precision ameliorates a
the size of the alphabet increases! to the average LCS length
of two random strings measured from direct Monte Ca
simulations. We pursue here the work of@10# by studying the
behavior of the above ‘‘mean-field’’ approximation in th
limit of large alphabets. We describe a method that allows
to refine the cavity calculation made for the Bernoulli matc
ing model, by taking correlations of the random string mod
into account in a systematic way. This leads to a series
approximations getting closer and closer to the LCS pr
lem, which we quantify within a perturbative approach va
in the limit S→`. We find that, while our perturbative ap
proach provides an excellent approximation to the LCS pr
lem at finiteS, it leads to a singular expansion~in powers of
1/AS) around the Bernoulli matching model. In particula
the leadingcorrections to this mean-field approximation d
pend upon long-ranged correlation effects among
matches and cannot be captured by the method we use.

II. THE CAVITY SOLUTION TO THE BERNOULLI
MATCHING MODEL

Consider the latticeCNM formed by the integer points
( i j ), 0< i<N,0< j <M together with nearest-neighbo
bonds, and add a diagonal bond$( i 21,j 21),(i j )% for each
204 ©2000 The American Physical Society



to

a

th

s

a

,
ng

s

m
h
u

he

ng

s
e

e

or

e

he

ect
in

to
or-
is

ela-

ons
a
the

1/
e-

f

PRE 62 205MEAN-FIELD APPROXIMATIONS TO THE LONGEST . . .
point (i j ) such thate i j 51 ~we call such a point amatch!.
Define the weight of any path onCNM to be the number of
diagonal bonds that it contains, and letLi j be the maximum
possible weight of a directed path joining the point (0,0)
( i j ). In the random string model,Li j is just the length of a
LCS of the substrings (X1 , . . . ,Xi) and (Y1 , . . . ,Yj ). Set-
ting Li ,05L0,j50, the Li j ’s satisfy the following recursion
relation:

Li j 5max~Li 21,j ,Li , j 21 ,Li 21,j 211e i j !, ~1!

which follows from the fact that any directed path ending
( i j ) must visit one of the points (i 21,j ),(i , j 21), or (i
21,j 21). It turns out to be more convenient to work wi
the local gradient variablesn i j 5Li j 2Li 21,j and m i j 5Li j
2Li , j 21, rather than withLi j itself. It is obvious from Eq.~1!

that n i j and m i j can take only the values 0 or 1. Writingx̄
512x if xP$0,1%, the recursion relations forn i j and m i j
can be written in algebraic form:

n i j 5~12 ē i j n̄ i , j 21!m̄ i 21,j ,

m i j 5~12 ē i j m̄ i 21,j !n̄ i , j 21 , ~2!

with n i ,05n0,i5m i ,05m0,i50. The key property that wa
used ~but left unjustified! in @10# is that in the Bernoulli
matching model the variablesn i j andm i j along i 1 j 5t be-
comeindependentin the limit t→`. This can be viewed as
consequence of the directed polymer picture of@7#, if we
interpretLi j as the height profileL(x,t) ~as a function ofx
5 i 2 j andt5 i 1 j ) of a growing one-dimensional interface
described in a continuum limit by the Kardar-Parisi-Zha
equation~KPZ! @11#. In this limit, it is known @12# that the
gradient ofL(x,t) become decorrelated alongx ast→`. The
n i j ’s and m i j ’s could still have finite-ranged correlation
along thex direction at thediscretelevel of the model. How-
ever this does not happen here. This can be seen fro
Markov chain approach that we present in the Appendix. T
consequence of this decorrelation property is that we can
Eqs. ~2! in a self-consistent way in order to compute t
probabilities pi j 5P(n i j 51) and pi j8 5P(m i j 51) for i , j
large. In this sense we may view the Bernoulli matchi
model as a mean-field model in which Eqs.~2! are ‘‘cavity
equations’’ @10#. Assuming independence ofn i 21,j ,m i , j 21
ande i j in Eq. ~2! we get

pi j 512pi 21, j8 2~121/S!~12pi , j 21!~12pi 21,j8 !,

pi j8 512pi , j 212~121/S!~12pi , j 21!~12pi 21, j8 !. ~3!

These equations can be solved in a continuum limit@10#,
leading to

p~r !5
ArS21

S21,
p8~r !5

AS/r 21

S21
, ~4!

wherep(r )5 lim
i→`

pi ,ri andp8(r )5 lim
i→`

pi ,ri8 , and

gS
B~r !5 lim

i→`

Li ,ri

i
5p~r !1rp8~r !5

ArS2r 21

S21.
~5!
t

a
e
se

Note that Eqs.~4! and ~5! are only valid for 1/S<r<S. If
r .S (r ,1/S), the process evolves toward the state (p,p8)
5(1,0) @(p,p8)5(0,1)# ~this is a ‘‘percolation transition’’
of the LCS problem@10#!.

III. BERNOULLI MATCHING MODEL VERSUS RANDOM
STRING MODEL

Let us briefly compare Eq.~5! to the numerical estimate
obtained for the random string model. For simplicity w
shall restrict ourselves to the caser 51 ~random strings of
equal sizes!. Using Monte Carlo simulations and a finite-siz
scaling analysis, it was found@10# that the relative error
(gS

B2gS)/gS @with gS
B5gS

B(r 51)52/(11AS)# is about
12% for S52 andS53, and decreases for 4<S<15 ~it is
about10.9% for S515). Figure 1 reproduces the behavi
of the differenceeS5gS

B2gS in a log-log plot forS up to
130. Numerically,eS5gS

B2gS decreases rather fast at larg
S, showing a 1/Sa dependence for a value ofa compatible
with 3/2. We remark that a simple expansion holds for t
Bernoulli matching model, as we haveSgS

B/(2AS22)
51/(121/S)5111/S11/S21•••. Anticipating on a simi-
lar expansion for the random string model, we would exp
corrections in the left-hand side of this relation to occur
the 1/S term.

IV. INCORPORATION OF CORRELATIONS

We now come to the question of computing corrections
the above approximation, by incorporating some of the c
relations of the random string model in our calculation. Th
can be done in a systematic way as follows. We iterate r
tions ~2! a certain number, sayk of times. The resulting
equations are averaged, taking into account correlati
among thee i j ’s, to build up the transition probabilities of
Markov process that we use as a refined approximation to
LCS problem. This approach is similar to then-tree approxi-
mations that were used by Cook and Derrida to obtain ad
expansion for the directed polymer problem on finit

FIG. 1. Scaling ofeS5gS
B2gS with S. Log-log plot for 20<S

<130 ~error bars not reproduced!, together with a reference line o
slope23/2.
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FIG. 2. Perturbative approximations togS .
This is a bar graph: For each 2<S<10, the first
to fifth bars from left to right give, respectively
the values ofgS

B5gS
(1) , gS

(3) , gS
(4) , gS

(5) , and our
numerical estimate ofgS .
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dimensional lattices@13#. We note however that the Ber
noulli matching model is very different from a model o
directed polymers on a hierarchical lattice, and the w
‘‘tree’’ would be somewhat misleading here. In order to an
lyze the above new process, we use a perturbative appro
assumingthat the variablesn i j andm i j for i 1 j 5t are inde-
pendent in the stationary distribution, as they are in the B
noulli matching model. It is then straightforward to obtain
self-consistent equation forp5 lim

i→`
pii in the form

f S
(k)(p)5p, where f S

(k)(p) is an S-dependent polynomial o
degree 2k in p. The positive solutionpS

(k) to this equation
provides us with a new approximationgS

(k)52pS
(k) to gS .

Since there are no three-term correlations in the rand
string model~correlations among thee i j ’s occur only for
configurations forming loops on the square lattice, e.g., in
four corners of a rectangle!, it follows that no correlation in
the disorder occur at levelk52, sogS

(k) differ from gS
B only

for k>3. An explicit computation shows that the equati
f S

(k)(p)5p has only one positive root, at least up tok55.
The corresponding values ofgS

(k) thus provide sensible per
turbative approximations togS , which are reproduced in Fig
2. Note that the estimates are improving, at least up tk
55 for S>3. The successive values ofg2

(k) are not incom-
patible with a nonmonotonous approach tog2. The relative
error (gS

(k)2gS)/gS at k55 is of 20.48% for S52 and
10.28% for S53, a significant improvement compared
the error committed with the Bernoulli matching estima
gS

B . This approximation scheme would be perfectly cons
tent if a decorrelation property occurred at every levelsk.
This is in factnot the case, for example, one can show tha
the invariant distribution of the process at levelk53, the
variablesn i j andm i j are necessarily correlated. In the KP
picture we may say that fork>3, there remains ast→`
short-ranged correlations along thex direction in the local
gradients of the growing interface’s height. However, the
correlations turn out to be numerically very small, whi
explains why our perturbative approach gives already
pretty accurate result atS52,3. Moreover, whenS becomes
d
-
ch,

r-

m

e

-

e

a

large this approach becomes more and more accurate, a
exact invariant distribution resembles more and more tha
the Bernoulli matching model, and we expect that the le
ing corrections introducedat a given level kare captured by
this approximation.

We now evaluate the behavior ofgS
(k) as S→`. This

evaluation involves comparingf S
(k)(p) to the analogous poly-

nomial f S
B(k)(p) computed within the Bernoulli matching

model. The coefficients ofd f S
(k)5 f S

B(k)2 f S
(k) are directly re-

lated to correlations among thee i j ’s. For example, the com
putation of d f S

(3) involves the four-correlation term

^ē i 1 j 1
ē i 1 j 2

ē i 2 j 1
ē i 2 j 2

&5(111/(S21)3)(121/S)4, and we
have

d f S
(3)~p!5

1

~S21!3 S 12
1

SD 4

~12p!2@12 f S
(1)~p!#2, ~6!

with f S
(1)(p)5 f S

B(1)(p)512p2(121/S)(12p)2. The coef-

ficients of d f S
(k) all turn out to be of orderO(1/S3) or

smaller. For completeness we also give the expression o
polynomial f S

B(3)(p), which reads

f S
B(3)~p!512 f S

(2)~p!2S 12
1

SD 1

S
~12p!2

22S 12
1

SD 2

p~12p!@12 f S
(1)~p!#

2S 12
1

SD 3

@12 f S
(1)~p!#2Fp21S 12

1

SD ~12p!2G ,
~7!

where f S
(2)(p)5 f S

B(2)(p)5 f S
(1)+ f S

(1)(p). If we now let dpS
(k)

5pS
B(k)2pS

(k) where pS
B(k) is the positive solution to

f S
B(k)(p)5p, i.e., pS

B(k)5pS
B51/(11AS), a standard compu

tation leads to
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dpS
(k)5

d f S
(k)~pS

B!

12
d

dp
f S

B(k)~pS
B!

~8!

up to negligible terms at largeS. It can be checked tha
(d/dp) f S

B(k)(pS
B)5122k/AS1O(1/S). It follows then from

Eq. ~8! that for fixed k, the correctiondpS
(k) is of order

O(1/S5/2), which cannot account for the observed 1/S3/2 be-
havior of eS5gS

B2gS . The computation givesdpS
(3)

;1/6S5/2, dpS
(4);1/2S5/2, and dpS

(5);1/S5/2, together with
correcting terms in the form of series in powers of 1/AS. We
could not extract the general terms of these series for a
trary k, but we strongly suspect that~at least! the coefficient
Ak in front of 1/S5/2 divergesat largek. The argument goes
roughly as follows. The correlation terms involved in th
computation ofd f S

(k)(p) can all be put into the form

^ē i 1 j 1
••• ē i l j l

&5^~12e i 1 j 1
!•••~12e i l j l

!&. ~9!

Expanding the product and taking averages, it is not diffic
to see that any such term behaves as

^~12e i 1 j 1
!•••~12e i l j l

!&

512S l
1D 1

S
1S l

2D 1

S2 2S l
3D 1

S3 1
ni 1 j 1••• i l j l

S3
1OS 1

S4D
5S 12

1

SD lF11
ni 1 j 1••• i l j l

S3
1OS 1

S4D G , ~10!

where ni 1 j 1••• i l j l
is the number of rectangles that can

formed with four corners on the graph made up by the lat
points (i 1 j 1), . . . ,(i l j l). At level k we have to consider rect
angles formed on the triangular latticeDk made up by the
points (i , j ) such that 0< i , j <k andi 1 j >k. The numbernk
of these rectangles satisfies the recursion relationnk
52nk212nk221k(k11)/2, which, in the large-k limit,
gives (d2/dk2)nk;k2/2, leading tonk;

1
24 k4 ~from a more

precise computation, taking account ofn050 and n151,
one finds thatnk5 1

24 k41 1
4 k31 11

24 k21 1
4 ). All these rect-

angles are involved inAk , as, for example, the polynomia
d f S

(k)(p) always contains a term of the form

F S 12
1

SD k(k11)/2

2K )
( i j )PDk

ē i j L G~12p!2k, ~11!

which gives a contributionnk /S31O(1/S7/2) to d f S
(k)(pS).

Unless some special cancelation occurs between the diffe
correlation terms, we thus expect that the behavior ofAk will
be approximately given byAk}nk/2k, i.e., we find that it
diverges likek3 at largek. We conclude that the leadin
corrections to the Bernoulli matching model in a largeS
expansion depend on long-ranged correlations among
matches in the random string model. In order to capture th
we should look at arbitrarily large values ofk, for which the
above perturbative approach is no longer valid.
i-

lt

e

nt

he
m

V. CONCLUSION

The main point of this paper is that, while the Bernou
matching model provides a natural and accurate mean-fi
like approximation to the LCS problem valid in the limit of
large alphabet, the corresponding large-S expansion is non-
perturbative: Inclusion of finite-ranged correlations leads t
series with diverging coefficients, while the overall behav
of the expansion at largeS does not reproduce the observe
gap between the two models. This contrasts with the res
of @13#, where then-tree approximation led to a consiste
1/d expansion for the directed polymer problem. As alrea
pointed out, we are dealing here with a different kind
mean-field approximation. The Bernoulli matching model
not an infinite-dimensional model, and replica symmetry
not broken in this model@10#. Note that the 1/d expansion
for the directed polymer problem is also known to be sing
lar, but in a more subtle way: Replica symmetry is resto
at finite dimensions, leading to important ‘‘tunneling’’ e
fects between the energy valleys of the mean-field pict
@14#. An interesting feature of the LCS problem is that t
corrections induced by finite-ranged correlations, while s
gular, remain within a perturbative series in powers of 1/AS.
In this respect, the situation for the LCS problem seems m
favorable than in other combinatorial problems where
correlations in the disorder induce nonperturbative corr
tions in an expansion around the mean-field approxima
@15#. This makes the LCS problem an interesting model
investigating this kind of singularity.
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APPENDIX: MARKOV CHAIN APPROACH
TO THE BERNOULLI MATCHING MODEL

Let us denote by (nm) t5$n i j ,m i j ,i 1 j 5t% the state of
the process defined by Eq.~2!, with t interpreted as time. In
the Bernoulli matching model the evolution is Markovia
i.e., the transition from a given state at timet to another state
at time t11 is not affected by the states at timest8,t ~this
is not the case in the random string model, where the tra
tion from timet to time t11 is affected by the whole history
of the process!. We will first show that, as a Markov proces
the Bernoulli matching model admits invariant distributio
in which the components of (nm) t are completely decorre
lated ~we mention that the same result has been found i
different way in@16#, in the caseN5M ). Consider the rela-
tions ~2! restricted to a given cell of the latticeCNM . The
corresponding ‘‘one-cell’’ transition probability
P1(n,mun8,m8) is given by
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P1~n,mun8,m8!

5
nmn̄8m̄8

S
1 n̄mn̄8m81nm̄n8m̄81 n̄m̄

3@n8m81~121/S!n̄8m̄8#. ~A1!

A simple computation shows that the one-cell Perro
Frobenius equationP1p15p1 ~with matrix notations! has a
solution of the formp1(n,m)5@pn1(12p) n̄ #@p8m1(1
2p8)m̄# provided the probabilitiesp andp8 satisfy

15p1p81~S21!pp8. ~A2!

Suppose now that we let the bonds on the lower corne
any given rectangle be occupied independently with pr
ability p for horizontal bonds andp8 for vertical bonds. A
moment’s thought shows that thesamedistribution will hold
for the upper corner bonds if we let the occupation numb
for the bonds inside the rectangle evolve according to
~2!, as long asp andp8 satisfy Eq.~A2!. Hence any solution
of Eq. ~A2! provides us with a decorrelated invariant dist
bution as was claimed. In a continuum limit, these invari
distributions can be identified locally with the ‘‘pure’’ in
variant distributions of the process, i.e., those invariant d
tributions evolved from a single initial state of the variabl
n,m. More precisely let us impose periodic boundary con
tions along thex5 i 2 j direction ~this is a way of working
‘‘locally’’ !. We let n t5(n1

t , . . . ,nL
t ) and m t

5(m1
t , . . . ,mL

t ) be the state variables at timet on a band of
‘‘width’’ L, and we adopt a numerotation such that Eq.~2!
reads

n i
t115~12 ē i

t11n̄ i 11
t !m̄ i

t ,

m i
t115~12 ē i

t11m̄ i
t!n̄ i 11

t , ~A3!

for i 51, . . . ,L (L11 being identified with 1). From the
remarks made above, the Perron-Frobenius equationPLpL
5pL of this process admits solutions of the for

pL
(p,p8)(n1 ,m1 . . . .,nL ,mL)5) i 51

L p1(n i ,m i), where again
(p,p8) is any solution of Eq.~A2!. For finite L, however,

pL
(p,p8) is not pure. To get an understanding of the pure d

tributions, we adopt a lattice gas point of view, remarki
that the quantity

C5(
i 51

L

n i2m i ~A4!

is a conserved charge of the evolution~this conservation law
is exact only under the above periodic boundary condition!.
om

n

-

of
-

rs
q.

t

-

-

-

It can also be checked that the Markov process defined
Eq. ~A3! connects any two states (n im i),(n i8m i8) having the
same chargeC. It follows that there are exactly 2L11 pure
distributions, in correspondence with the possible valu
2L<C<L. We can extract a formal expression for the pu
invariant distributionpC(n i ,m i) evolved from an arbitrary
state of chargeC, from the ‘‘mixed’’ invariant distribution

pL
(p,p8)(n i ,m i). Namely, we have

pC~n i ,m i !5

pL
(p,p8)~n i ,m i !dS C2(

i
n i1(

i
m i D

Z~C!
~A5!

whereZ(C) is a normalization factor. Note that, contrary
the appearances, the right-hand side of Eq.~A5! doesnot
depend on (p,p8) @this can be seen directly from the expre

sion of pL
(p,p8) by making use of Eq.~A2!#. In the limit L

→`, the fluctuations ofC about its mean valueL(p82p)

with respect topL
(p,p8) become negligible, and we expect th

the differences between the pure distributionspC ~more pre-
cisely the differences between their finite correlation fun
tions! for which C/L is close top82p will become insig-
nificant. This can be checked directly from Eq.~A5! using a
saddle-point evaluation. Hence the pure distributions o
periodic band of infinite width can be identified with a co
tinuum of decorrelated distributionsp (p,p8), parametrized by
the solutions of Eq.~A2! for which 0<p,p8<1. Returning
to the original latticeCNM , one must take care of the bound
ary conditions imposed along the axesi 50 and j 50. The
process will now develop only locally~i.e., along any given
direction! according to a distribution of the formp (p,p8),
with p andp8 being functions ofr 5 i / j . The cavity approach
of Sec. II allows us to treat different boundary conditions
a simple way. For example, if the horizontal bonds alonj
50 ~the vertical bonds alongi 50) are supposed to be oc
cupied independently with probabilityp1 (p2), where 0
<p1 , p2<1/(11AS) ~the original problem corresponds t
the casep15p250), one finds that

p~r !5p1 , 0<r<r 1 ,

p~r !5
ArS21

S21
, r 1<r<r 2 ,

p~r !5
12p2

11~S21!p2
, r>r 2 , ~A6!

where r 1 and r 2 are such thatp15(Ar 1S21)/(S21),
p25(AS/r 221)/(S21), andp8(r ) is such that Eq.~A2! is
satisfied.
n
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